Abstract

High cycle fatigue is one of the most crucial problems in designing reliable ferroelectric actuators and sensors. On the micro- and mesoscales, fatigue crack growth determines the life time of the smart ceramic devices, being controlled by both mechanical and electric loads. Giving rise to residual stresses, ferroelectric domain switching and domain wall motion mediate between crack tip and external loading. Thus, two dissipative processes have to be modeled on the microscale, finally leading to evolutions of damage as well as macroscopic piezoelectric, dielectric and stiffness properties. A condensed approach is used to solve the nonlinear constitutive problem of a polycrystalline representative volume and an accumulation model is applied to efficiently handle predictions of high cycle loading. Numerical examples help investigating measures to foster the life time of ferroelectric devices, always keeping an eye on the actuating performance of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.