Abstract

ABSTRACTWe applied a bulk AlN substrate to an AlGaN-based ultraviolet light emitting diode (UV-LED) and found that this combination enables high injection current, which shows the LED's potential for large ultraviolet flux extraction. Heat dissipation is an important issue for LEDs. Bulk AlN substrate has high thermal conductivity, a wurtzite crystal symmetry the same as that of nitride emitters, and transparency in the ultraviolet wavelength range. An UV-LED grown on a bulk AlN substrate shows output power linearity up to high injection current up to 300 mA, whereas a similar device grown on an AlN-template formed on a sapphire substrate only shows linearity up to an injection current of about 150 mA. It also showed very stable emission peak wavelength. For example, the emission peak shift is less than 2 nm in spite of the large injection current of 200 mA. Both findings are attributed to the heat dissipation afforded by the high thermal conductivity of the bulk AlN. This LED still suffers from internal absorption loss caused by the residual color centers in the AlN at present. However, further improvement of bulk AlN substrates will lead to high flux and highly efficient ultraviolet sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.