Abstract

Short-time high joule heating causing thermal breakdown of metal interconnects in ESD/EOS protection circuits and I/O buffers has become a reliability concern. Such failures occur frequently during testing for latchup robustness and during ESD/EOS type events. In this work, heating and failure of passivated TiN/AlCu/TiN integrated circuit interconnects in a quadruple level metallization system of a sub-0.5 μm CMOS technology has been characterized under high-current pulse conditions. A model incorporating the heating of the layered metal system and the oxide surrounding it has been developed which relates the maximum allowable current density to the pulse width. The model is shown to be in excellent agreement with experimental results and is applied to generate design guidelines for ESD/EOS and I/O buffer interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.