Abstract
Cesium lead iodide light-emitting diodes (LEDs) are attractive for displays due to their Rec. 2020 red standard compliance. However, achieving high current efficiencies (CEs), which is important for displays, is challenging because their emission spectrum is near the tail of the photopic luminosity function. Substituting some iodine with bromine can improve CEs by enlarging the bandgap, but defects easily form in iodine-bromine mixed perovskites. Here, we successfully reduced defect formation by adding organic ammonium salts and zwitterions. The organic ammonium salts do not form low-dimensional perovskites under the hydrogen bonding interaction of zwitterions. Instead, they passivate the cesium vacancy by forming new hydrogen bonds after perovskite crystallization. This approach leads to a red perovskite LED with a high CE of 12.8 cd A-1 and a peak external quantum efficiency of 20.3%, meeting the Rec. 2020 standard. It can be extended to large-area devices (2500 mm2) without a significant efficiency loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.