Abstract

We report measurements of the temperature and electric field dependent breakdown of the quantum Hall effect in two-dimensional InSb/AlInSb heterostructures. The electron temperature Te is studied as a function of electric field and it is shown that the energy loss rates of electrons to the lattice follow a (Te3−TL3) dependence for 2 K<Te<22 K at a lattice temperature TL=1.5 K. The high-current induced breakdown of the quantum Hall effect (QHE) is linearly proportional to sample width as deduced from the Hall resistivity and shows breakdown at lower current densities as deduced from the resistivity (ρxx) due to nonuniformity in carrier density. Temperature dependent studies show that the quantum Hall effect persists to considerably higher temperatures than the conventional GaAs/AlGaAs system. Using the energy loss rates, we describe the QHE breakdown in terms of bootstrap-type electron heating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.