Abstract
Although cubic ice (ice Ic) is considered to be an important phase of water that impacts ice cloud formation in the Earth's upper atmosphere, its properties have not been studied to the same extent as those of hexagonal ice (ice Ih). This is because pristine ice Ic is not formed in simple laboratory conditions. Ice Ic formed in ambient conditions has a stacking disordered array of both hexagonal and cubic-structured hydrogen-bonded water molecules. It is therefore an active area of research to find ways of developing stacking disorder-free pure ice Ic. We demonstrate the evolution of almost pure ice Ic structure within the spherical nanopores of a hydrostable Cr-based metal-organic framework MIL-101(Cr) with an average pore size of 1 nm by low-temperature neutron diffraction study on D2O. It is observed that at temperatures below 230 K a fraction of liquid D2O transforms into ice and more than 94% of ice crystals evolved inside the pore are cubic in shape. This is a significantly high fraction of ice Ic formed under simple conditions inside the spherical pores of a Cr-based MOF. It is also observed that upon increasing the temperature, ice Ic remains stable until its melting point, without being transformed into ice Ih. This observation is in contrast to our previous observation of ice structure in the 2D cylindrical nanopores of MCM-41, where H2O ice after creeping out from the cylindrical channel was seen to be dominated by hexagonal shape. In the present study, the D2O molecules were confined into well-defined spherical nanopores, which hindered the growth of crystals above a certain size, thus minimizing the stacking disordered array. Nanoconfinement of water inside uniform spherical pores is therefore a promising method for the evolution of a significantly large fraction of cubic ice by minimizing the stacking disorder. This finding may open up the possibility of forming ice Ic with 100% cubicity under simple laboratory conditions, which will help in exploring the microphysics of ice cloud formation in the upper atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.