Abstract
The CD28/cytotoxic T-lymphocyte antigen 4 (CTLA-4)blocker belatacept selectively inhibits alloreactive T cell responses but is associated with a high incidence of acute rejection following renal transplantation,which led us to investigate the etiology of belatacept–resistant graft rejection. T cells can differentiate into functionally distinct subsets of memory T cellsthat collectively enable protection against diverse classes of pathogens and can cross-react with allogeneicantigen and mediate graft rejection. T helper 17(Th17) cells are a pro-inflammatory CD4+ lineage that provides immunity to pathogens and are pathogenic in autoimmune disease. We found that T helper 1 (Th1)and Th17 memory compartments contained a similar frequency of divided cells following allogeneic stimulation.Compared to Th1 cells, Th17 memory cells expressed significantly higher levels of the coinhibitory molecule CTLA-4. Stimulation in the presence of belatacept inhibited Th1 responses but augmented Th17 cells due to greater sensitivity to coinhibition by CTLA-4. Th17 cells from renal transplant recipients were resistant to ex vivo CD28/CTLA-4 blockade with belatacept, and an elevated frequency of Th17 memory cells was associated with acute rejection during belatacept therapy. These data highlight important differences in costimulatory and coinhibitory requirements of CD4+ memory subsets, and demonstrate that the heterogeneity of pathogen-derived memory has implications for immunomodulation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.