Abstract

CO adsorption and dissociation on the Mo and C terminations of the orthorhombic Mo2C(100) surface at different coverage were systematically investigated on the basis of density functional theory. On the Mo termination, only molecular adsorption is likely for nCO = 9–16. Mixed molecular and dissociative adsorption becomes possible for nCO = 8, while only dissociative adsorption is favorable for nCO = 1–7. This indicates the coverage-dependent CO dissociation and equilibrium between dissociation and desorption. On the C termination, there is no dissociative adsorption, and only molecular adsorption is favorable at all coverages (nCO = 1–16). The computed CO stretching frequencies as well as the predicted desorption states from ab initio thermodynamic analysis agree well with the available experimental findings. The stable coverage as a function of temperature and partial pressure provides useful information not only for surface science studies at ultrahigh vacuum conditions but also for practical applications at high temperature and pressure in exploring reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.