Abstract

α-MgAgSb is a promising near-room temperature thermoelectric material, characterized by its intrinsically low lattice thermal conductivity, a feature attributed to the significant atomic mass contrast and complex crystal structure. In this work, we achieved respective zTavg values of 0.58 in the temperature range of 150-300 K and 1.22 in the range of 300-550 K for α-MgAgSb, indicating exceptional potential for both cooling and power generation applications. Additionally, through the reduction of cross-sectional size, the stability of MgAgSb/Ag interface was enhanced under high temperature, which is crucial for the practical application of thermoelectric module. To verify the property of α-MgAgSb material, a 7-pair MgAgSb/Bi2Te3 module was fabricated, demonstrating a maximum cooling temperature difference ΔTmax of 60 K at hot-side temperature of 300 K and a power generation efficiency ηmax of 7.2% with ΔT of 275 K. This work paves the way for the application of Mg-based thermoelectric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call