Abstract

Polar bears (Ursus maritimus) rely upon Arctic sea ice as a physical habitat. Consequently, conservation assessments of polar bears identify the ongoing reduction in sea ice to represent a significant threat to their survival. However, the additional role of sea ice as a potential, indirect, source of energy to bears has been overlooked. Here we used the highly branched isoprenoid lipid biomarker-based index (H-Print) approach in combination with quantitative fatty acid signature analysis to show that sympagic (sea ice-associated), rather than pelagic, carbon contributions dominated the marine component of polar bear diet (72–100%; 99% CI, n = 55), irrespective of differences in diet composition. The lowest mean estimates of sympagic carbon were found in Baffin Bay bears, which were also exposed to the most rapidly increasing open water season. Therefore, our data illustrate that for future Arctic ecosystems that are likely to be characterised by reduced sea ice cover, polar bears will not only be impacted by a change in their physical habitat, but also potentially in the supply of energy to the ecosystems upon which they depend. This data represents the first quantifiable baseline that is critical for the assessment of likely ongoing changes in energy supply to Arctic predators as we move into an increasingly uncertain future for polar ecosystems.

Highlights

  • Polar bears (Ursus maritimus) are an ice-obligate species, utilising sea ice for hunting, travelling and mating[1]

  • The recent decline in Arctic sea ice extent[2] is likely to be a serious threat to polar bears[3] as recognised by the IUCN[4]

  • Conversion of H-Prints to estimates of sympagic carbon, using Eq 3, indicated that, on average 86% (72–100; 99% CI) of the marine carbon reaching polar bears was of sympagic origin (Table 1)

Read more

Summary

Introduction

Polar bears (Ursus maritimus) are an ice-obligate species, utilising sea ice for hunting, travelling and mating[1]. Recent simulations have estimated a 71% probability that the mean global population of polar bears will decrease by > 30% over the 3–4 decades if sea ice continues to decline at its current rate[3]. Such assessments are based mainly on the value of sea ice as a physical habitat and its influence on, for example, seasonal sea ice-terrestrial migratory movement [5], hunting and feeding success [6], habitat availability for denning [7] and cub survival effects [8] and so likely underestimate. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.