Abstract

AbstractHighly efficient red–green–blue (RGB) tricolor luminescence switching was demonstrated in a bicomponent solid film consisting of (2Z,2′Z)‐2,2′‐(1,4‐phenylene)bis(3‐(4‐butoxyphenyl)acrylonitrile) (DBDCS) and (2Z,2′Z)‐3,3′‐(2,5‐bis(6‐(9H‐carbazol‐9‐yl)hexyloxy)‐1,4‐phenylene)bis(2‐(3,5‐bis(trifluoromethyl)phenyl)acrylonitrile) (m‐BHCDCS). Reversible RGB luminescence switching with a high ratiometric color contrast (λem=594, 527, 458 nm for red, green, and blue, respectively) was realized by different external stimuli such as heat, solvent vapor exposure, and mechanical force. It was shown that Förster resonance energy transfer in the bicomponent mixture could be efficiently switched on and off through supramolecular control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call