Abstract

Temporal holograms can be realized by temporal amplitude-only modulation devices and used for generation and processing of complex (amplitude and phase) time-domain signals. Based on the temporal hologram concept, we numerically and experimentally demonstrate a novel design for linear optical pulse compression using temporal modulation of continuous-wave light combined with dispersion. The newly introduced scheme overcomes the undesired background problem that is intrinsic to designs based on temporal zone plates, while also offering an energy efficiency of ~25%. This pulse compression scheme can ideally provide an arbitrarily high time-bandwidth product using a low peak-power modulation driving signal, though in practice it is limited by the achievable modulation bandwidth and dispersion amount.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call