Abstract
The coherence properties of a gas of bosonic atoms above the Bose-Einstein-condensation transition temperature were studied. Bragg diffraction was used to create two spatially separated wave packets, which interfere during expansion. Given sufficient expansion time, high fringe contrast could be observed in a cloud of arbitrary temperature. Fringe visibility greater than 90% was observed, which decreased with increasing temperature, in agreement with a simple model. When the sample was ``filtered'' in momentum space using long, velocity-selective Bragg pulses, the contrast was significantly enhanced in contrast to predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.