Abstract

Context. In the context of direct imaging of exoplanets, coronagraphs are commonly proposed to reach the required very high contrast levels. However, wavefront aberrations induce speckles in their focal plane and limit their performance. Aims. An active correction of these wavefront aberrations using a deformable mirror upstream of the coronagraph is mandatory. These aberrations need to be calibrated and focal-plane wavefront-sensing techniques in the science channel are being developed. One of these, the self-coherent camera, of which we present the latest laboratory results. Methods. We present here an enhancement of the method: we directly minimized the complex amplitude of the speckle field in the focal plane. Laboratory tests using a four-quadrant phase-mask coronagraph and a 32x32 actuator deformable mirror were conducted in monochromatic light and in polychromatic light for different bandwidths. Results. We obtain contrast levels in the focal plane in monochromatic light better than 3.10^-8 (RMS) in the 5 - 12 {\lambda}/D region for a correction of both phase and amplitude aberrations. In narrow bands (10 nm) the contrast level is 4.10^-8 (RMS) in the same region. Conclusions. The contrast level is currently limited by the amplitude aberrations on the bench. We identified several improvements that can be implemented to enhance the performance of our optical bench in monochromatic as well as in polychromatic light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.