Abstract

We present vanadium dioxide (VO2) thin films having high resistivity contrast with silicon substrates through use of crystallized alumina (Al2O3) buffer layers, engineered for this purpose. We first optimized the process by depositing VO2 onto C-plane sapphire substrates prior to alumina thin films. The latter of which were grown via atomic layer deposition on silicon substrates. We then applied rapid thermal annealing (RTA) to crystallize the alumina films. Scanning electron microscopy results indicated a thickness of 107 nm for each VO2 film, which yielded hot–cold resistivity contrast ratios of 9.76 × 104, 1.46 × 104, and 3.66 × 103, when deposited on the C-plane sapphire, the annealed buffers, and the as-deposited alumina buffers, respectively. Atomic force microscopy of the film surface roughness of the VO2 films indicated root mean squared roughness (Rq) of 4.56 nm, 6.79 nm, and 3.30 nm, respectively, for the films grown on the C-plane sapphire, annealed buffers, and as-deposited buffers. Finally, x-ray diffraction (XRD) of the VO2 films indicated the desired composition and strong (0h0)/(00h) texturing, when deposited on both the C-plane sapphire and the annealed alumina buffer layers. XRD results indicated a series of peaks corresponding to the α-Al2O3/C-plane sapphire, and an XRD analysis of the buffers alone confirmed crystallization of the buffer layer via RTA. The process defined in this paper produced a series of highly textured VO2 films making them most valuable for the integration of VO2 with silicon-based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.