Abstract

It is shown that high-contrast resonance of electromagnetically induced transparency (EIT) in a ladder Ξ-system of 5S 1/2-5P 3/2-5D 5/2 levels can be formed in optical cells containing a column of rubidium vapor with thickness L in an interval of 100 nm ≤ L ≤ 780 nm. Using bichromatic laser radiation with certain parameters, an 83% contrast of the EIT resonance (or dark resonance, DR) has been achieved for a vapor column thickness of L = 780 nm. An important condition for the formation of high-contrast DR is that the frequency of the coupling laser radiation must be resonant with the frequency of the corresponding 5P 3/2-5D 5/2 transition (for the probe radiation frequency scanned over the 5S 1/2-5P 3/2 transition). It is also shown that a DR can be formed at a record small vapor column thickness of L ≈ 100 nm. Expressions that can be used to estimate the expected DR width at small L values are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.