Abstract

Dysfunction of ENaC, the epithelial sodium channel that regulates salt and water reabsorption in epithelia, causes several human diseases, including cystic fibrosis (CF). To develop a global understanding of molecular regulators of ENaC traffic/function and to identify of candidate CF drug targets, we performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells. Screening over 6,000 genes identified over 1,500 candidates, evenly divided between channel inhibitors and activators. Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of (diacylglycerol kinase, iota) DGKι, a protein involved in PiP2 metabolism, downgrades ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.