Abstract

BackgroundThe development of drug resistance is a major cause of cancer therapy failures. To inhibit drug resistance, multiple drugs are often treated together as a combinatorial therapy. In particular, synergistic drug combinations, which kill cancer cells at a lower concentration, guarantee a better prognosis and fewer side effects in cancer patients. Many studies have sought out synergistic combinations by small-scale function-based targeted growth assays or large-scale nontargeted growth assays, but their discoveries are always challenging due to technical problems such as a large number of possible test combinations.MethodsTo address this issue, we carried out a medium-scale optical drug synergy screening in a non-small cell lung cancer cell line and further investigated individual drug interactions in combination drug responses by high-content image analysis. Optical high-content analysis of cellular responses has recently attracted much interest in the field of drug discovery, functional genomics, and toxicology. Here, we adopted a similar approach to study combinatorial drug responses.ResultsBy examining all possible combinations of 12 drug compounds in 6 different drug classes, such as mTOR inhibitors, HDAC inhibitors, HSP90 inhibitors, MT inhibitors, DNA inhibitors, and proteasome inhibitors, we successfully identified synergism between INK128, an mTOR inhibitor, and HDAC inhibitors, which has also been reported elsewhere. Our high-content analysis further showed that HDAC inhibitors, HSP90 inhibitors, and proteasome inhibitors played a dominant role in combinatorial drug responses when they were mixed with MT inhibitors, DNA inhibitors, or mTOR inhibitors, suggesting that recessive drugs could be less prioritized as components of multidrug cocktails.ConclusionsIn conclusion, our optical drug screening platform efficiently identified synergistic drug combinations in a non-small cell lung cancer cell line, and our high-content analysis further revealed how individual drugs in the drug mix interact with each other to generate combinatorial drug response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call