Abstract

In the tropical Indo-Pacific, most phylogeographic studies have focused on the shallow-water taxa that inhabit reefs to approximately 30 m depth. Little is known about the large predatory fishes, primarily snappers (subfamily Etelinae) and groupers (subfamily Epinephelinae) that occur at 100–400 m. These long-lived, slow-growing species support fisheries across the Indo-Pacific, yet no comprehensive genetic surveys within this group have been conducted. Here we contribute the first range-wide survey of a deepwater Indo-Pacific snapper, Pristipomoides filamentosus, with special focus on Hawai'i. We applied mtDNA cytochrome b and 11 microsatellite loci to 26 samples (N = 1,222) collected across 17,000 km from Hawai'i to the western Indian Ocean. Results indicate that P. filamentosus is a highly dispersive species with low but significant population structure (mtDNA ΦST = 0.029, microsatellite F ST = 0.029) due entirely to the isolation of Hawai'i. No population structure was detected across 14,000 km of the Indo-Pacific from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern rarely observed in reef species. Despite a long pelagic phase (60–180 days), interisland dispersal as adults, and extensive gene flow across the Indo-Pacific, P. filamentosus is unable to maintain population connectivity with Hawai'i. Coalescent analyses indicate that P. filamentosus may have colonized Hawai'i 26 K–52 K y ago against prevailing currents, with dispersal away from Hawai'i dominating migration estimates. P. filamentosus harbors low genetic diversity in Hawai'i, a common pattern in marine fishes, and our data indicate a single archipelago-wide stock. However, like the Hawaiian Grouper, Hyporthodus quernus, this snapper had several significant pairwise comparisons (F ST) clustered around the middle of the archipelago (St. Rogatien, Brooks Banks, Gardner) indicating that this region may be isolated or (more likely) receives input from Johnston Atoll to the south.

Highlights

  • The effort to understand patterns of genetic connectivity in the Indo-Pacific has largely focused on shallow-water reef associated taxa and pelagic species that support multinational fisheries

  • Due to geographic proximity and a lack of genetic differentiation we grouped the specimens from the Hawaiian locations of Northampton Seamounts and Laysan Island (Northampton), Pioneer and Lisianski (Pioneer), and Maui and Kaho’olawe Islands (Maui)

  • Our results indicate that P. filamentosus is a highly dispersive species that displays little to no population structuring across 14,000 km from Tonga in the Central Pacific to the Seychelles in the western Indian Ocean, a pattern documented in only two shallow-water reef associated fishes (Bluespine unicornfish, Naso unicornis [4]; Bluestripe Snapper, Lutjanus kasmira [5]) plus the highly dispersive moray eels [67], [68]

Read more

Summary

Introduction

The effort to understand patterns of genetic connectivity in the Indo-Pacific has largely focused on shallow-water reef associated taxa and pelagic species that support multinational fisheries. A growing number of studies indicate a lack of genetic subdivision in reef fishes across nearly 10,000 km from French Polynesia in the Central Pacific to Western Australia and Cocos Keeling in the Indian Ocean [1]– [8], a biogeographic region known as the Indo-Polynesian Province [9]–[11]. Species compositions and phylogeographic analyses indicate that the large spans of open ocean that isolate the Hawaiian Islands are formidable barriers for most shallow-water taxa. A subset of the Indo-Pacific shallow-water fauna has successfully colonized Hawai’i and the species that did so are isolated from parent populations as evidenced by the 25% endemism in shallow-water fishes there [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.