Abstract

X-ray imaging plays an increasingly crucial role in clinical radiography, industrial inspection, and military applications. However, current X-ray imaging technologies have difficulty in protecting against information leakage caused by brute force attacks via trial-and-error. Here high-confidentiality X-ray imaging encryption by fabricating ultralong radioluminescence memory films composed of lanthanide-activated nanoscintillators (NaLuF4 : Gd3+ or Ce3+ ) with imperceptible purely-ultraviolet (UV) emission is reported. Mechanistic investigations unveil that ultralong X-ray memory is attributed to the long-lived trapping of thermalized charge carriers within Frenkel defect states and subsequent slow release in the form of imperceptible radioluminescence. The encrypted X-ray imaging can be securely stored in the memory film for more than 7 days and optically decoded by perovskite nanocrystal. Importantly, this encryption strategy can protect X-ray imaging information against brute force trial-and-error attacks through the perception of lifetime change in the persistent radioluminescence. It is further demonstrated that the as-fabricated flexible memory film enables achieving of 3D X-ray imaging encryption of curved objects with a high spatial resolution of 20 lp/mm and excellent recyclability. This study provides valuable insights into the fundamental understanding of X-ray-to-UV conversion in nanocrystal lattices and opens up a new avenue toward the development of high-confidential 3D X-ray imaging encryption technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.