Abstract
The topography, structure, thermal, magnetic, and electrical properties of Bi4V2−xFexO11-δ ceramics substituted with x = 0.5 and 0.7 Fe were studied. The microscope analysis showed the presence of iron-rich nanocrystals formed on the Bi-Fe-V-O grains. The X-ray diffraction studies confirmed that grains are built mostly of tetragonal Bi4V1.5Fe0.5O10.5 phase. Thermal properties analysis showed an order-disorder type γ ↔ γʹ phase transition at a temperature of around 916 K, pronounced in samples doped with x = 0.5 Fe. The magnetic anomaly was observed in ceramics doped with x = 0.7 Fe which was assigned to Morin transition of Fe2O3. The conductivity was measured over a wide frequency range from 10 mHz to 1 MHz and at a wide temperature range from 373 to 923 K, using impedance spectroscopy. The D.C. conduction process was due to oxygen vacancies hopping while at low temperatures electron holes hopping is also possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.