7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1038/s41560-024-01472-3
Copy DOIJournal: Nature Energy | Publication Date: Feb 19, 2024 |
Citations: 50 | License type: CC BY 4.0 |
Chalcopyrite-based solar cells have reached an efficiency of 23.35%, yet further improvements have been challenging. Here we present a 23.64% certified efficiency for a (Ag,Cu)(In,Ga)Se2 solar cell, achieved through the implementation of a series of strategies. We introduce a relatively high amount of silver ([Ag]/([Ag] + [Cu]) = 0.19) into the absorber and implement a ‘hockey stick’-like gallium profile with a high concentration of Ga close to the molybdenum back contact and a lower, constant concentration in the region closer to the CdS buffer layer. This kind of elemental profile minimizes lateral and in-depth bandgap fluctuations, reducing losses in open-circuit voltage. In addition, the resulting bandgap energy is close to the local optimum of 1.15 eV. We apply a RbF post-deposition treatment that leads to the formation of a Rb–In–Se phase, probably RbInSe2, passivating the absorber surface. Finally, we discuss future research directions to reach 25% efficiency.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.