Abstract
The nitrogen removal mechanism of the high concentration powder carrier bio-fluidized bed (HPB) process was investigated with actual domestic wastewater. The micron-size (10–70 μm) powder carriers were diatomite and Fe–C. Results showed diatomite enriched the relative abundances of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, accordingly increasing the rate of nitrification. Even a 100% increase of genes associated with the ammonia oxidation was achieved. Fe–C enhanced the rate of substrate utilization mainly by increasing the activity of the electron transfer system. Hydrocyclone separator, as a key device of HPB, was able to recover the carriers with high efficiency (recovery efficiency of 72.66 ─ 82.50% after 75 days), thus, indirectly improving the functionality of the carriers. Furthermore, it could renew the surface of microbial aggregations, consequently improving the adsorption capacity to substrates. HPB could provide the feasibility of shortening the hydraulic retention time and expanding the capacity of wastewater treatment plants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.