Abstract
The effect of a high extracellular glucose concentration on the mitogenic response of rat vascular smooth muscle cells (SMCs) to heparin-binding epidermal growth factor-like growth factor (HB-EGF) was investigated. The mitogenic effect of HB-EGF was significantly greater in SMCs cultured in high glucose (25 mmol/L) than in cells cultured in low glucose (5.5 mmol/L) or at high osmolarity (5.5 mmol/L glucose plus 19.5 mmol/L mannitol). The mitogenic effect of epidermal growth factor (EGF), which shares the EGF receptor with HB-EGF, was not affected by glucose concentration. The mitogenic effect of HB-EGF was greater when incubated with heparan sulfate (HS) isolated from SMCs cultured in high glucose than with HS from cells cultured in low glucose. HS synthesized by cells in high glucose was of smaller molecular size and less sulfated than HS synthesized by cells in low glucose. The abundance of mRNA encoding HS-N-deacetylase/N-sulfotransferase (HS-NdAc/NST), a regulatory enzyme in the biosynthesis of HS, was decreased by high glucose in a protein kinase C-independent manner. These observations suggest that the enhanced mitogenic response to HB-EGF in SMCs cultured in high glucose may be attributable to changes in cell-associated HS. Downregulation of HS-NdAc/NST gene expression by high glucose may be related to the altered HS biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, thrombosis, and vascular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.