Abstract

Li-ion batteries intended to operate over extremes in temperature or at cell voltages approaching 5 V exceed the fundamental capabilities of the electrolytes presently available. The most promising solvents that do meet the fundamental requirements exhibit exceptional instability at the low potentials found with negative electrodes of Li-ion batteries today. Herein, nitrile and linear carbonate electrolytes were stabilized with only the use of a small percentage of additives to enable formulations that may be of use for low temperature and high voltage operating conditions, respectively. In this work, the electrochemical characteristics of Li-ion cells were explored for a variety of electrolytes, with promising performance identified in systems composed predominantly of ethyl methyl carbonate (EMC), 3-methoxypropionitrile (3MPN), or adiponitrile (ADN). Vinylene carbonate (VC) and monofluoroethylene carbonate (FEC) were added in low concentrations (≤5 vol%) to stabilize the interface of the carbon negative electrode and the electrolyte, with FEC proving to be effective across all electrolytes examined herein. The fluoride decomposition products of FEC contributing to the SEI have been identified for the first time without the presence of lithium hexafluorophosphate (LiPF6) in the electrolyte, thereby leading to a clearer explanation of its exceptional protective effect within the SEI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.