Abstract

We show that the onset pressure for appreciable conductivity in layered copper-halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu-Cl perovskites require pressures >50 GPa to show a conductivity of 10-4 S cm-1 , whereas here a Cu-Br congener, (EA)2 CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10-3 S cm-1 at only 2.6 GPa, and 0.17 S cm-1 at 59 GPa. Substitution of higher-energy Br 4p for Cl 3p orbitals lowers the charge-transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High-pressure X-ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression-induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression-induced conductivity of Cu-halide perovskites to more technologically accessible pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.