Abstract

Compliant pneumatic systems are well suited for wearable robotic applications. The actuators are lightweight, conformable to irregular shapes, and tolerant of uncontrolled degrees of freedom. These attributes are especially desirable for hand exoskeletons given their space and mass constraints. Creating active digit extension with these exoskeletons is especially critical for clinical populations such as stroke survivors who often have great difficulty opening their paretic hand. To achieve active digit extension with a soft actuator, we have created pneumatic chambers that lie along the palmar surface of the digits. These chambers can directly extend the digits when pressurized. We present a characterization of the extension force and passive flexion resistance generated by these pneumatic chambers across a range of joint angles as a function of cross-sectional shape, dimension, and wall thickness. The chambers were fabricated out of DragonSkin 20 using custom molds and were tested on a custom jig. Extension forces created at the end of the chamber (where fingertip contact would occur) exceeded 3.00 N at relatively low pressure (48.3 kPa). A rectangular cross-section generated higher extension force than a semi-obround cross-sectional shape. Extension force was significantly higher (p < 0.05) for actuators with the highest wall thickness compared to those with the thinnest walls. In comparison to previously used polyurethane actuators, the DragonSkin actuators had a much higher extension force for a similar passive bending resistance. Passive bending resistance of the chamber (simulating finger flexion) did not vary significantly with actuator shape, wall thickness, width, or depth. The flexion resistance, however, could be significantly reduced by applying a vacuum. These results provide guidance in designing pneumatic actuators for assisting finger extension and resisting unwanted flexion in the fingers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call