Abstract
White light-emitting diodes (WLEDs) are the key components in the next-generation lighting and display devices. The inherent toxicity of Cd/Pb-based quantum dots (QDs) limits the further application in WLEDs. Recently, more attention is focused on eco-friendly QDs and their WLEDs, especially the phosphor-free WLEDs based on mono-component, which profits from bias-insensitive color stability. However, the imbalanced carrier distribution between red-green-blue luminescent centers, even the absence of a certain luminescent center, hinders their balanced and stable photoluminescence/electroluminescence (PL/EL). Here, an In3+-doped strategy in Zn-Cu-Ga-S@ZnS QDs is first proposed, and the balanced carrier distribution is realized by non-equivalent substitution and In3+ doping concentration modulation. The alleviation of the green emitter by the In3+-related red emitter and the compensation of blue emitter by the Zn-related electronic states contribute to the balanced red-green-blue emitting with high PL quantum yield (PLQY) of 95.3% and long lifetime (T90) of over 1100 h in atmospheric conditions. Thus, the In3+-doped WLEDs can achieve exceedingly slight proportional variations between red-green-blue EL intensity over time (∆CIE = (0.007, 0.009)), and high champion CRI of 94.9. This study proposes a single-component QD with balanced and stable red-green-blue PL/EL spectrum, meeting the requirements of lighting and display.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.