Abstract
AbstractIn this paper, a uniform nanorod (NR) array is etched onto the surface of Micro‐Light‐Emitting‐Diodes (µLEDs) and mix Ag nanoparticles (NPs) with QDs to fill the gaps between the nanorods. Simultaneously, the study utilizes graphene to connect individual nanorods and enhance current spreading. The nanorod array's structure significantly reduces the distance between the QDs and the quantum well (QW), reducing energy loss from the excitation light source through a non‐radiative energy transfer (NRET) mechanism. Additionally, the Ag NPs function as localized surface plasmons (LSPs), further enhancing the CCE of QDs via the absorption resonance. In this study, the effects of two types of Ag NPs are compared with different absorption resonance peaks on device performance. The results demonstrate that Ag NPs with absorption resonance peaks matching the emission wavelength of QDs play a more crucial role in the system. This configuration achieves a CCE of 77.78% for µLEDs with nanorod arrays, operating at a current of 10 mA. Compared to the conventional µLED structure with QDs only on the surface, the proposed method improves the CCE of µLEDs by an impressive 86.5%. This outcome underscores the significant contribution of the NR structure and LSPs in enhancing the CCE of QD‐µLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.