Abstract
Nanotechnology quantum well thermoelectric materials have been developed that have high Figures of Merit and that can attain very high coefficients of performance (COP) to satisfy the requirements for cooling room temperature detectors. Hi-Z Technology, Inc. (Hi-Z) has developed Si/SiGe solid state quantum well (QW) thermoelectric (TE) materials that have demonstrated a Seebeck coefficient and thermoelectric properties that provide >4X higher conversion efficiencies than the current bulk TE materials. With the new Si/SiGe QW materials, cooling systems can be designed that are much smaller, quieter, lighter weight, and that have much reduced power requirements than current TE materials or presently used vapor-compression systems. On-going development for these new QW TE materials has demonstrated high-efficiency TE materials for power generation applications ranging from providing power for wireless sensors to converting waste heat from diesel engine exhaust directly to electricity and thus reducing the load on the alternator and reducing fuel consumption. Now, cooling devices with a high coefficient of performance (COP) are feasible and are being designed for room temperature detector cooling applications. Multi-layer nanocomposite QW films (each 10 nm thick) were fabricated to demonstrate that Si/SiGe QW materials can be deposited on a low thermal conductivity substrate and provide at least the desired COP over the required temperature range of 250K to 350K in a single-stage nano cooler. These QW thermoelectric materials can also be implemented into commercial equipment in the air conditioning and refrigeration applications, thus eliminating fluids, ozone-impacting refrigerants and compressors. Thermoelectric properties of QW thin-film materials have been measured at Hi-Z, several universities and national labs. The conversion efficiency of QW materials has been measured at Hi-Z in two different test couples and in a two-couple device. In all cases, good agreement was obtained between the measurements and prior analytical predictions. Cooling performance was measured in a test with one QW TE element and good agreement was obtained between measurements and analytical predictions. TE properties of the Si/SiGe QW material used in the analysis and design of the subject TE nano cooler were recently independently verified at University of California San Diego (UCSD) and the U.S. National Institute of Standards and Technology (NIST). This paper deals with the analysis of a high COP QW TE single-stage nano cooler for room temperature detectors and with the improved TE properties obtained with the QW thin-film materials resulting in such high COP designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.