Abstract

Alkali-promoted hydrotalcite-based materials showed very high CO(2) storage capacity, exceeding 15 mmol g(-1) when the carbonation reaction was carried out at relatively high temperature (300-500 °C) and high partial pressure of steam and CO(2). In situ XRD experiments have allowed correlation of high CO(2) capacity to the transformation of magnesium oxide centres into magnesium carbonate in alkali-promoted hydrotalcite-based material. Moreover, it has been clearly shown that crystalline magnesium carbonate may be reversibly formed at temperatures above 300 °C in the presence of sufficient partial pressure of steam in the gas phase, conditions that are prevalent in pre-combustion CO(2) capture. The role of steam appears to be of utmost importance for the formation of the bulk carbonate phase and for its reversibility. It is proposed that a high partial pressure of steam keeps the magnesium oxide periclase phase sufficiently hydroxylated to allow magnesium carbonate formation if a relatively high partial pressure CO(2) is present in the gas phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.