Abstract
This work shows the synthesis, characterization and evaluation of dense-ceramic membranes made of Ce0.85Gd0.15O2-δ-LaNiO3 (CG-LN) composites, where the fluorite-perovskite ratio (CG:LN) was varied as follows: 75:25, 80:20 and 85:15 wt.%. Supports were initially characterized by XRD, SEM and electrical conductivity (using vacuum and oxygen atmospheres), to determine the composition, microstructural and ionic-electronic conductivity properties. Later, supports were infiltrated with an eutectic carbonates mixture, producing the corresponding dense dual-phase membranes, in which CO2 permeation tests were conducted. Here, CO2 permeation experiments were performed from 900 to 700°C, in the presence and absence of oxygen (flowed in the sweep membrane side). Results showed that these composites possess high CO2 permeation properties, where the O2 addition significantly improves the ionic conduction on the sweep membrane side. Specifically, the GC80-LN20 composition presented the best results due to the following physicochemical characteristics: high electronic and ionic conductivity, appropriate porosity, interconnected porous channels, as well as thermal and chemical stabilities between the composite support and carbonate phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.