Abstract

Abstract. Drained organic soils are anthropogenic emission hotspots of greenhouse gases (GHGs). Most studies have focused on deep peat soils and on peats with high organic carbon content. In contrast, histic Gleysols are characterized by shallow peat layers, which are left over from peat cutting activities or by peat mixed with mineral soil. It is unknown whether they emit less GHGs than deep Histosols when drained. We present the annual carbon and GHG balance of grasslands for six sites on nutrient-poor histic Gleysols with a shallow (30 cm) histic horizon or mixed with mineral soil in Northern Germany (soil organic carbon concentration (Corg) from 9 to 52%). The net GHG balance, corrected for carbon export by harvest, was around 4 t CO2–C–eq ha−1 yr−1 on soils with peat layer and little drainage (mean annual water table < 20 cm below surface). The net GHG balance reached 7–9 t CO2–C–eq ha−1 yr−1 on soils with sand mixed into the peat layer and water tables between 14 cm and 39 cm below surface. GHG emissions from drained histic Gleysols (i) were as high as those from deep Histosols, (ii) increase linearly from shallow to deeper drainage, (iii) but are not affected by Corg content of the histic horizon. Ecosystem respiration (Reco) was linearly correlated with water table level even if it was below the histic horizon. The Reco/GPP ratio was 1.5 at all sites, so that we ruled out a major influence of the inter-site variability in vegetation composition on annual net ecosystem exchange (NEE). The IPCC definition of organic soils includes shallow histic topsoil, unlike most national and international definitions of Histosols. Our study confirms that this broader definition is appropriate considering anthropogenic GHG emissions from drained organic soils. Countries currently apply soil maps in national GHG inventories which are likely not to include histic Gleysols. The land area with GHG emission hotspots due to drainage is likely to be much higher than anticipated. Deeply drained histic Gleysols are GHG hotspots that have so far been neglected or underestimated. Peat mixing with sand does not mitigate GHG emissions. Our study implies that rewetting organic soils, including histic Gleysols, has a much higher relevance for GHG mitigation strategies than currently recognized.

Highlights

  • Organic soils constitute three percent of the land area of the temperate zone in Europe (Montanarella et al, 2006; Kottek et al, 2006)

  • We present the annual carbon and greenhouse gases (GHGs) balance of grasslands for six sites on nutrient-poor histic Gleysols with a shallow (30 cm) histic horizon or mixed with mineral soil in Northern Germany (soil organic carbon concentration (Corg) from 9 to 52 %)

  • According to this report no measurements were conducted on these soils. To fill this data gap and to test the validity of GHG inventory assumptions, we focus on the most common landuse type in temperate climates and measure GHGs along drainage and carbon gradients on a heavily degraded organic soil, which meets the IPCC definition of “organic soil”

Read more

Summary

Introduction

Organic soils constitute three percent of the land area of the temperate zone in Europe (Montanarella et al, 2006; Kottek et al, 2006). A large fraction of them has been drained for forestry, agriculture, and peat extraction. In Germany, organic soils make up approximately five percent of the land area, about 1.7 million ha (UBA, 2012; Richter, 1998) and drainage for agricultural purposes or industrial peat extraction was conducted on most of these soils (UBA, 2012). Only shallow peat soils remain in many former peatland areas and many peatlands have even completely disappeared (e.g. 61 % over 30 yr in Denmark, Nielsen et al, 2012). Such loss of peatland areas as carbon

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.