Abstract

The study of chylomicron pathway through which it exerts its metabolic effects on biliary cholesterol secretion is crucial for understanding how high dietary cholesterol influences cholelithogenesis. We explored a relationship between cholesterol absorption efficiency and gallstone prevalence in 15 strains of inbred male mice and the metabolic fate of chylomicron and chylomicron remnant cholesterol in gallstone-susceptible C57L and gallstone-resistant AKR mice. Our results show a positive and significant ( P<0.0001, r=0.87) correlation between percent cholesterol absorption and gallstone prevalence rates. Compared with AKR mice, C57L mice displayed significantly greater absorption of cholesterol from the small intestine, more rapid plasma clearance of chylomicrons and chylomicron remnants, higher activities of lipoprotein lipase and hepatic lipase, greater hepatic uptake of chylomicron remnants, and faster secretion of chylomicron remnant cholesterol from plasma into bile. All of these increased susceptibility to cholesterol gallstone formation in C57L mice. We conclude that genetic variations in cholesterol absorption efficiency are associated with cholesterol gallstone formation in inbred mice and cholesterol absorbed from the intestine provides an important source for biliary hypersecretion. Differential metabolism of the chylomicron remnant cholesterol between C57L and AKR mice clearly plays a crucial role in the formation of lithogenic bile and gallstones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.