Abstract
An in vivo chloroquine efficacy study was undertaken on the island of Car Nicobar because a temporal rise in the Plasmodium falciparum parasite population containing mutations in the chloroquine resistance transporter (PfCRT) protein has been reported there. A WHO protocol with a 28 day follow-up schedule was used for chloroquine efficacy studies. Finger-prick blood from P. falciparum malaria patients was used for sequencing the genes encoding PfCRT (exon 2), dihydrofolate reductase (PfDHFR) and dihydropteroate synthetase (PfDHPS). The majority of patients showed chloroquine treatment failure (60.42%, n=48). A higher early treatment failure (ETF) rate was recorded among non-responders (23 of 29, 79.31%). Each patient, irrespective of their chloroquine response, was infected with P. falciparum that contained mutated PfCRT (predominantly genotype C72V73I74E75T76) associated with high chloroquine resistance and none with the wild-type pfcrt gene. Therefore, mutated PfCRT was also present in the P. falciparum isolates of all the chloroquine responders. The majority of individuals from both groups also contained parasites with a high number of two-locus PfDHFR-PfDHPS mutations, associated with a high level of antifolate resistance. There is a predominance of chloroquine- and antifolate-resistant P. falciparum malaria in Car Nicobar, requiring an alternative antimalarial drug treatment policy, such as implementation of artesunate combination therapy (ACT), for this island.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.