Abstract

Three-dimensional (3-D) models of neural cell culture may provide researchers with a more physiologically-relevant setting to study neurobiological phenomena than traditional two-dimensional (2-D) culture models. However, in the development of thick (>500 microm) 3-D cultures, diffusion limited mass transport necessitated the use of cell densities much lower than those found in the central nervous system (CNS). The goal of this study was to evaluate the effects of continuous medium perfusion on the survival of thick, 3-D neuronal-astrocytic co-cultures at cell densities closer to those found in brain tissue. At the cell density and thickness used for these studies, 10(4) cells/mm(3) and 500-750 microm, respectively, non-perfused cultures exhibited widespread cellular/matrix degradation and cell death. However, co-cultures perfused at relatively high rates (2.5-11.0 microL/min, corresponding to 6-27 medium exchanges/day) demonstrated decreased degradation and enhanced viability compared to non-perfused co-cultures. Furthermore, the highest perfusion rate evaluated, 11.0 microL/min, resulted in >90% cell viability and maintenance of culture thickness. Next generation 3-D neural cultures, with cell types and densities better approximating the CNS, may provide enhanced model fidelity and be valuable in the mechanistic study of cell growth, interactions, and the responses to chemical or mechanical perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.