Abstract

We have developed a new expression vector, pcI ts ind +, based upon the powerful rightward promoter of bacteriophage lambda, which is controlled by a temperature-sensitive and chemically-inducible version of the lambda repressor on the same plasmid. Locating the repressor gene on the plasmid makes this vector “portable” in that it can be used to transform any strain of Escherichia coli. Hence, control over strains, induction conditions, and harvest times can be used to optimize yields of heterologous proteins. To provide a proof of concept, we show that E. coli recA + and recA − host cells transformed with pcI ts ind + modKlenTaq1 (a modified version of the large fragment of Thermus aquaticus DNA polymerase I) could be grown to high cell densities in multiple shake-flasks. A mutant version of modKlenTaq1 (V649C) could be induced by simply raising the thermostat setting from 30 to 37 °C and (in the case of recA + cells) adding nalidixic acid to achieve full induction (12–13% of the total cellular protein). Using a rapid, two-step purification process, it was possible to purify nearly 300 mg of modKlenTaq1 V649C from six 2.8-L baffle-bottomed shake-flasks each holding 1.5 L of culture for a final yield of approximately 33 mg per liter or 3 mg of purified enzyme per gram of cells wet weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.