Abstract
LiBH4–MgH2 system in a 2 : 1 molar ratio constitutes a representative reactive hydride composite (RHC) for hydrogen storage. However, sluggish kinetics and poor reversibility hinder the practical applications. To ease these problems, amorphous TiB2 and NbB2 nanoparticles were synthesized and employed as catalysts for the 2LiBH4–MgH2 system. Isothermal de-/rehydrogenation and temperature programmed mass spectrometry (MS) measurements show that amorphous TiB2 and NbB2 nanoparticles can significantly improve the hydrogen storage performance of the 2LiBH4–MgH2 system. 9 wt% hydrogen can be released within only 6 min for nanoTiB2-doped 2LiBH4–MgH2, while for the undoped composite limited hydrogen of 3.9 wt% is released in 300 min at 400 °C. The dehydrogenation activation energies for the first and second steps are dramatically reduced by 40.4 kJ mol−1 and 35.2 kJ mol−1 after doping with nanoTiB2. It is believed that TiB2 and NbB2 nanoparticles can first catalyze the dehydrogenation of MgH2, and then induce the decomposition of LiBH4 and meanwhile act as nucleation agents for MgB2, thereby greatly enhancing the kinetics of dehydrogenation. The present study gives clear evidence for the significant performance of transition metal boride species in doped RHCs, which is critically important for understanding the mechanism and further improving the hydrogen storage properties of RHCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.