Abstract

This report discusses the observed faster decoloration of an azo dye with an enhanced degradation rate constant achieved using metal nanostructures as a catalyst. Silver and copper nanostructures were synthesized by reducing the corresponding nitrate salts using hydrazine and hexamethylenetetramine (HMTA) in sodium hydroxide (NaOH) solution. The influence of HMTA was clearly evident from the scanning electron microscopy (SEM) images; with increasing concentration it caused agglomeration and the formation of net-like nanostructures. An x-ray diffraction study confirmed the formation of monometallic Ag and Cu nanostructures. The prepared nanostructures exhibited dipole and multipole surface plasmon resonance-related optical absorption bands which were size and shape dependent. The degradation of the azo dye acid blue 113 (AB113) in the presence of sodium borohydride (NaBH4) was taken as model system for studying the catalytic activity of the metal nanostructures. From the optical absorption spectral studies of dye degradation it was observed that the rate constant (k) was of the order of kCu > kAg > kno catalyst. From the dye degradation studies a high catalytic activity was observed for Cu nanostructures with a rate constant of 20.93 × 10–4 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.