Abstract

Excess nitrogen (N) after animal slurry application is a persistent problem of intensive agriculture, with consequences such as environmental pollution by ammonia (NH3) and nitrous oxide (N2O) emissions and nitrate (NO3−) leaching. High-carbon organic soil amendments (HCAs) with a large C:N ratio have shown the potential of mitigating unintended N losses from soil. To reduce gaseous and leaching N losses after the application of slurry, a laboratory incubation study was conducted with silt loam soil. We tested the potential of three different types of HCA—wheat straw, sawdust, and leonardite (application rate 50 g C L−1 slurry for each of the three HCAs)—to mitigate N loss after amendment of soil with pig and cattle slurry using two common application modes (slurry and HCA mixed overnight with subsequent addition to soil vs. sequential addition) at an application rate equivalent to 80 kg N ha−1. Compared to the control with only soil and slurry, the addition of leonardite reduced the NH3 emissions of both slurries by 32–64%. Leonardite also reduced the total N2O emissions by 33–58%. Wheat straw reduced N2O emissions by 40–46%, but had no effect on NH3 emission. 15 N labeling showed that the application of leonardite was associated with the highest N retention in soil (24% average slurry N recovery), followed by wheat straw (20% average slurry N recovery). The mitigation of N loss was also observed for sawdust, although the effect was less consistent compared with leonardite and wheat straw. Mixing the slurry and HCA overnight tended to reduce N losses, although the effect was not consistent across all treatments. In conclusion, leonardite improved soil N retention more effectively than wheat straw and sawdust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.