Abstract

The 2-μm wave band is emerging as a potential new window for optical telecommunications with several distinct advantages over the traditional 1.55 μm region. First of all, the hollow-core photonic band gap fiber (HC-PBGF) is an emerging transmission fiber candidate with ultra-low nonlinearity and lowest latency (0.3% slower than light propagating in vacuum) that has its minimum loss within the 2-μm wavelength band. Second, the thulium-doped fiber amplifier that operates in this spectral region provides significantly more bandwidth than the erbium-doped fiber amplifier. In this paper, we demonstrate a single-channel 2-μm transmitter capable of delivering >52 Gbit/s data signals, which is twice the capacity previously demonstrated. To achieve this, we employ discrete multitone modulation via direct current modulation of a Fabry-Perot semiconductor laser. The 4.4-GHz modulation bandwidth of the laser is enhanced by optical injection locking, providing up to 11 GHz modulation bandwidth. Transmission over 500-m and 3.8-km samples of HC-PBGF is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.