Abstract

Network architectural changes to satisfy all the 5G+ mobile network specifications and requirements are necessary due to the popularization of streaming and cloud applications on omnipresent portable devices. The combination of massive installation of micro-cell antenna sites with the cloud access radio network (C-RAN) architecture has recently been nominated as a promising technology for high-capacity mobile fronthaul links, albeit at a high cost. An alternative approach for next-generation fronthaul networks is to utilize the already deployed passive optical networks (PONs) where wireless and wired services may coexist in a converged manner. Non-orthogonal multiple access (NOMA) modulation with multi-band carrierless amplitude and phase modulation (NOMA-CAP) has recently been investigated as a promising 5G+ modulation format candidate to increase the capacity and flexibility of future mobile networks. Here, we experimentally demonstrate the convergence of a NOMA-CAP wireless waveform with a single-carrier wired signal in a PON scenario using radio-over-fiber (RoF) technology. Specifically, fifteen NOMA-CAP bands, with two NOMA power levels to double the capacity, transmit 15 Gb/s multiplexed with a digital 10 Gb/s four-level pulse amplitude modulation (PAM-4) signal for downlink application. Two converged system implementations have been considered, first using electrical frequency division multiplexing (EFDM) and secondly using the hybrid EFDM-wavelength division multiplexing (EFDM-WDM). Successful transmission through a 25 km span of standard single-mode fiber is achieved with negligible transmission penalty for both proposed converged solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.