Abstract

High-capacity chitosan-based chelating resin, N-(2-hydroxyethyl)glycine-type chitosan, was synthesized using chloromethyloxirane (CMO) as a cross-linker and a coupling arms and hydroxylethylamine and bromoacetic acid as a synthesizer for the N-(2-hydroxyethyl)glycine chelating moiety. The CMO could bind with both of hydroxyl and amino group of the chitosan resin, and then couple with the chelating moiety. Increasing the amounts of chelating moiety could increase the capacity of the resin toward metal ions. Most transition and rare-earth metals could adsorb quantitatively on the resin at wide pH ranges and could be separated from alkaline and alkaline-earth metals. The resin was packed in a mini-column (40 mm length × 2 mm i.d.) which was installed in a Multi-Auto-Pret system. The Multi-Auto-Pret system coupled with ICP-AES was successfully applied to the determination of transition and rare-earth metals in river water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.