Abstract
In this paper, we report on flexible, high capacitance, pentacene, and regioregular poly(3-hexylthiophene) (rr-P3HT) organic field-effect transistors fabricated on metallized Mylar films. The gate insulator, Al2O3, was prepared by means of anodization. We show that covering the anodized gate insulator with an octadecyltrichlorosilane self-assembled monolayer or apoly(α-methylstyrene) capping layer has the same effect on carrier mobility as for thermally grown silicon oxide. In addition, temperature-dependent measurements of mobility were performed on transistors fabricated with and without modification of the gate dielectric. In the case of both the pentacene and the rr-P3HT transistors, the μ(T) behavior shows that the cause of the mobility enhancement through surface modification is not a reduction in the level of energetic disorder (σ in Bässler’s model), as in the case of the fully amorphous organic semiconductor poly(triarylamine) [Veres et al., Adv. Funct. Mater. 13, 199 (2003)]. It appears that the surface modification improves mobility by changing the morphology of the semiconducting films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.