Abstract

Abstract We report multicolor BVI monitoring and spectroscopic classification of the dwarf nova KSP-OT-201503a. The transient was detected by the Korean Microlensing Telescope Network (KMTNet) Supernova Program (KSP) in 2015 March, reached a peak apparent magnitude V ≃ 17.3 mag from a quiescent magnitude V ≃ 22.6 mag, and lasted for approximately 17 days. Our high-cadence sampling allows us to identify distinctive phases consisting of a rapid ascent, a main outburst composed of a flat plateau followed by a gradual dimming, and a quick decline. We observe the sharp transition between the ascent phase and main outburst phase, likely related to the deceleration of the heating front as it passes through the accretion disk. These features in the light curves indicate that the outburst is outside-in. Archival data reveal the outburst history of the source, showing at least three outbursts between 2011 and 2015. These are equally separated by approximately 25 months, though we find a recurrence time as short as 189 days is compatible with the archival data. An optical spectrum obtained 701 days from outburst peak shows prominent Balmer emission lines superimposed on a blue continuum, consistent with a cataclysmic variable in quiescence. The outburst properties of KSP-OT-201503a closely resemble those of U Gem-type dwarf novae usually associated with younger, longer-period systems above the period gap of 2–3 hr observed in cataclysmic variables. This suggests that the source may be a rare U Gem-type dwarf nova with a long recurrence time, though we are unable to rule out the possibility that KSP-OT-201503a lies below the period gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.