Abstract

Recent studies in rodents have demonstrated that diffusion imaging is highly sensitive to differences in myelination. These studies suggest that demyelination/dysmyelination cause increases in the radial diffusivity from diffusion tensor imaging (DTI) measurements and decreases in the restricted diffusion component from high b-value diffusion-weighted imaging experiments. In this study, the shaking pup (sh pup), a canine model of dysmyelination, was studied on a clinical MRI scanner using a combination of conventional diffusion tensor imaging and high b-value diffusion-weighted imaging methods. Diffusion measurements were compared between control dogs and sh pups in the age range 3 months to 16 months, which is similar to the period of early childhood through adolescence in humans. The study revealed significant group differences in nearly all diffusion measures with the largest differences in the zero-displacement probability (Po) from high b-value DWI and the radial diffusivity from DTI, which are consistent with the observations from the published rodent studies. Age-related changes in Po, FA, mean diffusivity, radial diffusivity and axial diffusivity were observed in whole brain white matter for the control dogs, but not the sh pups. Regionally, age-related changes in the sh pup white matter were observed for Po, mean diffusivity and radial diffusivity in the internal capsule, which may be indicative of mild myelination. These studies demonstrate that DWI may be used to study myelin abnormalities and brain development in large animal models on clinical MRI scanners, which are more amenable to translation to human studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call