Abstract

A large, performance based, knowledge and experience in the field of nuclear fuel behaviour is available for nominal operation conditions. The database is continuously completed and precursor assembly irradiations are performed for testing of new materials and innovative designs. This procedure produces data and arguments to extend licencing limits in the permanent research for economic competitiveness. A similar effort must be devoted to the establishment of a database for fuel behaviour under off-normal and accident conditions. In particular, special attention must be given to the so-called design-basis-accident (DBA) conditions. Safety criteria are formulated for these situations and must be respected without consideration of the occurrence probability and the risk associated to the accident situation. The introduction of MOX fuel into the cores of light water reactors and the steadily increasing goal burnup of the fuel call for research work, both experimental and analytical, in the field of fuel response to DBA conditions. In 1992, a significant programme step, CABRI REP-Na, has been launched by the French Nuclear Safety and Protection Institute (IPSN) in the field of the reactivity initiated accident (RIA). After performing the nine experiments of the initial test matrix it can be concluded that important new findings have been evidenced. High burnup clad corrosion and the associated degradation of the mechanical properties of the ZIRCALOY4 clad is one of the key phenomena of the fuel behaviour under accident conditions. Equally important is the evidence that transient, dynamic fission gas effects resulting from the close to adiabatic heating introduces a new explosive loading mechanism which may lead to clad rupture under RIA conditions, especially in the case of heterogeneous MOX fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.