Abstract
For time-resolved diffraction studies of irreversible structural dynamics upon photoexcitation, there are constraints on the number of perturbation cycles due to thermal effects and accumulated strain, which impact the degree of crystal order and spatial resolution. This problem is exasperated for surface studies that are more prone to disordering and defect formation. Ultrafast electron diffraction studies of these systems, with the conventional stroboscopic pump–probe protocol, require repetitive measurements on well-prepared diffraction samples to acquire and average signals above background in the dynamic range of interest from few tens to hundreds of picoseconds. Here, we present ultrafast streaked low-energy electron diffraction (LEED) that demands, in principle, only a single excitation per nominal data acquisition timeframe. By exploiting the space–time correlation characteristics of the streaking method and high-charge 2 keV electron bunches in the transmission geometry, we demonstrate about one order of magnitude reduction in the accumulated number of the excitation cycles and total electron dose, and 48% decrease in the root mean square error of the model fit residual compared to the conventional time-scanning measurement. We believe that our results demonstrate a viable alternative method with higher sensitivity to that of nanotip-based ultrafast LEED studies relying on a few electrons per a single excitation, to access to all classes of structural dynamics to provide an atomic level view of surface processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.