Abstract
We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted. If left uncontrolled, this leads to the generation of parasitic second-order Stokes wavelengths in the core, limiting the conversion efficiency and as we will show, clamping the achievable brightness enhancement. Using a coupled-wave formalism, we present the upper limit on brightness enhancement as a function of diameter ratio for conventionally guided fibers. We further present strategies for overcoming this limit based upon depressed well core designs. We consider two configurations: 1) pulsed cladding-pumped Raman fiber amplifier (CPRFA) and 2) cw cladding-pumped Raman fiber laser (CPRFL).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.