Abstract

BackgroundThe aim of this study was to determine whether brain abundant membrane attached signal protein 1 (BASP1) is a valuable prognostic biomarker for cervical cancer and whether BASP1 regulates the progression of cervical cancer.MethodsQuantitative real-time PCR, western blotting, and immunohistochemistry were used to determined BASP1 levels. Statistical analyses were used to examine whether BASP1 was a prognostic factor for patients with cervical cancer. The MTT assay, colony formation assay, cell cycle assay, anchorage-independent growth assay, and a tumor xenograft model were used to determine the role of BASP1 in the proliferation and tumorigenicity of cervical cancer.ResultsBrain abundant membrane attached signal protein 1 was upregulated in cervical cancer tissues and cells, and BASP1 expression levels were higher in patients that had died during follow-up compared with those that survived. There was a positive correlation between BASP1 expression and clinical stage (p < 0.001), T classification (p < 0.001), N classification (p < 0.05), and survival or mortality (p < 0.05). Patients with higher BASP1 expression had a shorter overall survival time. Cox regression analysis shown BSAP1 was an unfavorable prognostic factor for patients with cervical cancer. Overexpression of BASP1 promoted the proliferation of cervical cancer and its colony formation ability, accelerated cell cycle progression, and enhanced tumorgenicity. BASP1 knockdown inhibited the proliferation of cervical cancer and its colony formation ability, suppressed cell cycle progression, and decreased tumorgenicity.ConclusionsThe results showed that BASP1 not only is a novel prognostic factor for patients with cervical cancer, but also promotes the proliferation and tumorigenicity of cervical cancer.

Highlights

  • The aim of this study was to determine whether brain abundant membrane attached signal protein 1 (BASP1) is a valuable prognostic biomarker for cervical cancer and whether BASP1 regulates the progression of cervical cancer

  • Further analysis revealed that the N-terminus of BASP1 could be myristoylated; myristoylated BASP1 interacted with oleate-activated transcription factor PIP2, which recruits histone deacetylase histone deacetylase 1 (HDAC1) to the promoter regions of Wilms tumor 1 (WT1)-dependent target genes, causing transcriptional repression [8]

  • Toska and colleagues observed that BASP1 interacted with Prohibitin to recruit BRG1 to the promoter regions of WT1-dependent target genes, causing coactivator p300/CBP to dissociate from the promoter regions to inhibit target gene expression; the interaction between BASP1 and Prohibitin is critical for the recruitment of PIP2 and HDAC1 to the target genes of WT1 [9]

Read more

Summary

Introduction

The aim of this study was to determine whether brain abundant membrane attached signal protein 1 (BASP1) is a valuable prognostic biomarker for cervical cancer and whether BASP1 regulates the progression of cervical cancer. Toska and colleagues observed that BASP1 interacted with Prohibitin to recruit BRG1 to the promoter regions of WT1-dependent target genes, causing coactivator p300/CBP to dissociate from the promoter regions to inhibit target gene expression; the interaction between BASP1 and Prohibitin is critical for the recruitment of PIP2 and HDAC1 to the target genes of WT1 [9]. These findings suggested BASP1 plays an important role in development. The role of BASP1 in cervical cancer has not been reported

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.